Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(21): 4288-4302, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37803830

RESUMO

DNA in sperm undergoes an extreme compaction to almost crystalline packing levels. To produce this dense packing, DNA is dramatically reorganized in minutes by protamine proteins. Protamines are positively charged proteins that coat negatively charged DNA and fold it into a series of toroids. The exact mechanism for forming these ∼50-kbp toroids is unknown. Our goal is to study toroid formation by starting at the "bottom" with folding of short lengths of DNA that form loops and working "up" to more folded structures that occur on longer length scales. We previously measured folding of 200-300 bp of DNA into a loop. Here, we look at folding of intermediate DNA lengths (L = 639-3003 bp) that are 2-10 loops long. We observe two folded structures besides loops that we hypothesize are early intermediates in the toroid formation pathway. At low protamine concentrations (∼0.2 µM), we see that the DNA folds into flowers (structures with multiple loops that are positioned so they look like the petals of a flower). Folding at these concentrations condenses the DNA to 25% of its original length, takes seconds, and is made up of many small bending steps. At higher protamine concentrations (≥2 µM), we observe a second folded structure-the loop stack-where loops are stacked vertically one on top of another. These results lead us to propose a two-step process for folding at this length scale: 1) protamine binds to DNA, bending it into loops and flowers, and 2) flowers collapse into loop stacks. These results highlight how protamine uses a bind-and-bend mechanism to rapidly fold DNA, which may be why protamine can fold the entire sperm genome in minutes.


Assuntos
Protaminas , Sementes , Protaminas/química , Protaminas/metabolismo , Sementes/metabolismo , DNA/química , Espermatozoides/metabolismo , Flores/metabolismo
2.
Expert Rev Mol Diagn ; 15(7): 869-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26109316

RESUMO

Companion diagnostics are essential for the safe and effective use of the corresponding therapeutic products. The US FDA has approved a number of companion diagnostics used to select cancer patients for treatment with contemporaneously approved novel therapeutics. The processes of co-development and co-approval of a therapeutic product and its companion diagnostic have been a learning experience that continues to evolve. Using several companion diagnostics as examples, this article describes the challenges associated with the scientific, clinical and regulatory hurdles faced by FDA and industry alike. Taken together, this discussion is intended to assist manufacturers toward a successful companion diagnostics development plan.


Assuntos
Técnicas de Diagnóstico Molecular , Patologia Molecular/métodos , Aprovação de Equipamentos , Aprovação de Teste para Diagnóstico , Humanos , Patologia Molecular/legislação & jurisprudência , Estados Unidos , United States Food and Drug Administration
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...